2021-04-22 17:48:02 索煒達(dá)電子 1670
前言:
看到網(wǎng)上大部分TensorFlowGPU教程都需要看配置需要裝一大堆東西,然后就來更新一篇我知道的最簡便的安裝GPU版本的方法了,不用安裝CUDA CUDNN VS啥的,可能目前內(nèi)容上有點(diǎn)粗糙,后續(xù)會慢慢完善的。個人安裝的目的就是為了重新下載一個與keras版本匹配的TensorFlow,具體可以通過這個網(wǎng)址https://docs.floydhub.com/guides/environments/查看Keras與TensorFlow的對應(yīng)版本,然后我卸載了之前的TensorFlowGPU版本,順便來記錄一下安裝過程,當(dāng)然,讀者可以根據(jù)自己的需要去下載其他的TensorFlow-GPU
一、準(zhǔn)備階段
1.設(shè)備環(huán)境:win10+你電腦上有GPU。。。(雖然聽起來有點(diǎn)無腦)
2.安裝anaconda,這部分就不多說了,需要下載的請直接到官網(wǎng)下載,然后直接安裝,不放心的話去看看其他博客教程
3.卸載TensorFlow-GPU+Keras這一步是我自己需要做的,如果你原先沒有Tensorflow-gpu就不用管了,直接跳到下一步。
卸載指令:conda uninstall tensorflow-gpu==1.14.0
conda uninstall keras==1.0.8
二、安裝
1.如果你剛安裝好anaconda,或者出于其他原因,第一步就從建立一個虛擬環(huán)境開始吧。
按照下圖的順序來,②的命名自己隨意,③的選項(xiàng)建議選3.6或7吧,或者有更高版本也好,盡量別選2.X,2.7的據(jù)說都快要停止維護(hù)了,對python新手而言也不要選版本太高的,可能不穩(wěn)定。
點(diǎn)擊創(chuàng)建之后可能會等一段時間(因?yàn)闀鋫湎嚓P(guān)必要的庫所以可能有點(diǎn)慢)。
2.虛擬環(huán)境建完之后,操作如下圖:
再點(diǎn)擊“open terminal”進(jìn)入終端界面:
3.接下來就是重頭戲了,安裝TensorFlow-GPU:
在終端輸入:conda install -c aaronzs tensorflow-gpu
默認(rèn)應(yīng)該是下載最新版本,如果要特定版本,就conda install -c aaronzs tensorflow-gpu==xxx
但是我發(fā)現(xiàn)這個方法無法下載2.2.0版本,所以我退而求其次地下載了2.2.1了
這個過程可能會報warning什么的,如果可以運(yùn)行就忽略,有報什么錯歡迎在評論區(qū)留言。
然后就是漫長地等待了
完成后再輸入 conda list看看
4.安裝成功?。〗Y(jié)束了?。。?!對就是這么簡單?。。?!
但是,最后我們還是測試一下到底有沒有配置成功:
因?yàn)槲矣玫氖荘ycharm,這里再附加一下Pycharm配置Anaconda環(huán)境的過程:
按照下圖所示,或者直接Ctrl+Alt+S
打開設(shè)置之后就按照下圖操作,選完之后就全點(diǎn)"OK"
操作之后,可以看到右下角會顯示當(dāng)前的環(huán)境:
然后關(guān)鍵的一步測試了!操作如下:
新建一個python文件,然后輸入以下代碼,然后運(yùn)行:
import tensorflow as tf
import os
#os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
a = tf.constant(1.)
b = tf.constant(2.)
print(a+b)
print(tf.__version__)
print('GPU:', tf.config.list_physical_devices('GPU'))
print(tf.test.is_gpu_available())
輸出結(jié)果為:
tf.Tensor(3.0, shape=(), dtype=float32)
2.1.0
GPU: [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
True
當(dāng)然,,由于是用GPU跑的,所以會有這些信息:
2021-01-06 11:54:57.365737: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll
2021-01-06 11:55:00.178440: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library nvcuda.dll
2021-01-06 11:55:00.862896: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1555] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce GTX 1050 computeCapability: 6.1
coreClock: 1.493GHz coreCount: 5 deviceMemorySize: 2.00GiB deviceMemoryBandwidth: 104.43GiB/s
2021-01-06 11:55:00.863272: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll
2021-01-06 11:55:00.868083: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_10.dll
2021-01-06 11:55:00.872729: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_10.dll
2021-01-06 11:55:00.874234: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_10.dll
2021-01-06 11:55:00.879152: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_10.dll
2021-01-06 11:55:00.881920: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_10.dll
2021-01-06 11:55:00.892460: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2021-01-06 11:55:00.892777: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1697] Adding visible gpu devices: 0
2021-01-06 11:55:00.893388: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2
2021-01-06 11:55:00.895935: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1555] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce GTX 1050 computeCapability: 6.1
coreClock: 1.493GHz coreCount: 5 deviceMemorySize: 2.00GiB deviceMemoryBandwidth: 104.43GiB/s
2021-01-06 11:55:00.896318: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll
2021-01-06 11:55:00.896510: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_10.dll
2021-01-06 11:55:00.896701: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_10.dll
2021-01-06 11:55:00.896891: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_10.dll
2021-01-06 11:55:00.897081: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_10.dll
2021-01-06 11:55:00.897269: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_10.dll
2021-01-06 11:55:00.897458: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2021-01-06 11:55:00.897699: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1697] Adding visible gpu devices: 0
2021-01-06 11:55:01.557072: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1096] Device interconnect StreamExecutor with strength 1 edge matrix:
2021-01-06 11:55:01.557299: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102] 0
2021-01-06 11:55:01.557426: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] 0: N
2021-01-06 11:55:01.557723: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1241] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 1335 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1050, pci bus id: 0000:01:00.0, compute capability: 6.1)
然后就結(jié)束了!?。⊥瓿桑。?!